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Abstract-An integral equation for the problem of smooth contact between a rigid indenter and
an orthotropic beam is formulated using an approximate Green's function for surface displacements
in the beam, which is obtained as the sum of half·plane solutions for surface displacements, and
beam theory deflections. The left and right Green's functions for beam slope are approximated as
a single function with continuous derivatives using a least squares error procedure. A closed form
solution is obtained for the integral equation. Solutions are obtained for two cases: symmetric
indentation of simply supported orthotropic beams and indentation of cantilever beams. Closed
form expressions are derived for contact stresses and the contact force-eontact length relation in
terms of a nondimensional beam parameter B and a nondimensional contact parameter p.
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stilfness cocllicicnts (functions of clastic constants)
Young's modulus in I and 2 directions
Green's function
Green's function for be.lm slope
Green's function for half-pl.me boundary slope
shear modulus
beam thickness
beam length
contact force
nondimensional contact force = (4pn/(1CDlbl~)

contact stresses
nondimensional contact stress = (pR)/(D:!)
nondimensional contact stress = (ltbcp)/(2P)
coctneients in the Chebyshev polynomial for p
indenter radius ofcurvature
Chebyshev polynomials of first kind
Chebyshev polynomials of second kind
coordinate alles
(x-xc)!"
x-coordinate of indenter center
x-coordinate of contact center
x,//
xjl
nondimensional contact parameter = 8.75 Bi!~

indenter y-displacement
boundary slope of half·plane at x = 0
Poisson's ratio
dummy variable
(~ -.tel!c

I. INTRODUCTION

The problem of smooth indentation of beams of finite length by a rigid cylindrical indenter
has been studied by several authors. Keer and Ballarini (1983), Keer and Miller (1983) and
Keer and Schonberg (1986) approached the problem via a local-global technique. Their
methods ofanalysis superpose an infinite-layer solution. derived through the use of integral
transforms. on a pure-bending beam-theory solution. An integral equation is obtained for
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the contact problem, which is solved numerically. Sankar and Sun (1983) obtained a
solution for displacements in a beam by superposing beam theory deflections and dis­
placements obtained by solving the plane elasticity equations using finite Fourier trans­
forms. A point matching technique was used to modify the integral equation as a system
of linear algebraic equations. Later, Sun and Sankar (1985) extended the method for the
problem of indentation of initially stressed orthotropic beams.

Sankar (1987a) derived an approximate Green's function for surface displacements in
a beam by superposing the elasticity solution for half-plane and beam theory deflections.
The Green's function approach simplified the formulation of the contact problem by
eliminating the need for solving the elasticity equations, because half-plane displacements
can be obtained in a closed form. The contact problem was solved by a least squares
collocation procedure. Application of this method for orthotropic beams can be found in
Sankar (1987b).

In all studies referred to above, solution of the integral equation for the contact problem
was obtained numerically, and hence the dfect of beam dimensions, indenter radius of
curvature and degree of orthotropy on the contact behavior could be understood only by
means of numerical examples. In this paper, an approximate solution for the problem of
smooth contact between a rigid indenter and an orthotropic beam is obtained by following
the Green's function approach. The left and right Green's functions for beam slope an:
approximated by a single function which has a continuous second derivative. unlike the
actual Green's function. The integral equation for the contact problem is then solved
exactly. Closed-form solutions are obtained for contact stresses and contact force contact
length relation. As a result of this method. suitable nondimensional parameters are idcnt­
ified. and thc contact hellavior of an orthotropic heam is descrihed with few paramcters.

Although the prcsent method can he applied to any type of beam support, two examples
arc chosen for illustration. In the first exampll:, symllletric indl:ntation ofa simply supported
orthotropic bcam is considered. In this case the center of contm.:t length always coincides
with the beam center, and the con tad stresses arc symmetric ahollt the center. In the second
example. a cantikver heam is indented hy a smooth indenter. in which case the center of
contact rcgion relative to the indenter depl:nds on the contact force. Thus an additional
unknown is introduced.

It Illay he noted that the approximate Green's function is valid only if the load is not
very dose to either end of the heam (Sankar, 19X7a). In the present study we will assume
that the contact region is not within 0.25/ of the beam ends.

2. SYMMETRIC I:-lDENTATIO;\J OF A SIMPLY SUPPORTED BEAM

The problem is depicted in Fig. I. The orthotropic beam is of rectangular cross section
h x II and length /. The principal material directions I and 2 arc parallel to the x and y axes
respectively.
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Fig. I. Symmetric indentation of an orthotropic hearn.
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The integral equation for the symmetric contact problem is
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(I)

where p(x) := -G,.y(x.O) is the unknown contact stress beneath the indenter. 2c is the
contact length. g(x.~) is the Green's function for surface displacements in a beam. R is the
indenter radius ofcurvature and l1 is the y·displacement of the indenter. It should be noted
that eqn (I) assumes that the indenter has a parabolic profile. If the indenter is circular,
eqn (I) is valid only for c!R« I. The unknown displacement l1 can be eliminated by
differentiating eqn (I) with respect to x. Thus the integral equation takes the form

bL~" p(~)g'(x.e) d'; = -xIR. (2)

where a prime denotes differentiation with respect to x. It was shown in Sankar (1987b)
that an approximate .q(x.';) can be obtained by adding gh(X. e), the Green's function for
surface displacements in an orthotropic half.plane. and gb(.\", ';), the Green's function for
beam ddkctions. Thus eqn (2) c~m be written as

(3)

where.cJh is given by (Sankar. IlJS7b):

(4)

For the case of plane stress par~llIc! to the x-y plane. Dz == 2l::1!()'1 +AZ}' where).1 and ).2

arc the roots of the characteristic equation S II X'·-(2S12 +Sbb».1+Sn =O. SI' = lIE"
5 n = I/E2, Sbh = I/G I2 • 5'2 = -v'lIE" £, and Ez arc the Young's moduli in the I and 2
directions. G 12 is the she~lr modulus in the 1-2 plane and l'll is the Poisson's ratio. For the
case of plane strain, D 2 will be slightly ditTerent (Lekhnitskii, 1981).

The beam Grecn's function for the slope is

where D I := £1 for plane stress and DI = £d(l- viz) for plane strain. The function ljJ(x, <)
isddined as

and

(6)

It may be noted that ljJ is an odd function of the argument (.t- e). and can be expanded in
terms of odd powers of (x-~). We shall approximate ljJ by a single function of the type
cl(x-e} +C2(X-~)J.The constants CI and C2 depend upon the degree of accuracy and the
range of (x - e) over which the approximation is sought. In the present study, the maximum
contact length is assumed to be given by 2c =0.5/. We will therefore approximate ¢(x.';)
such that the error is a minimum over the range -0.5 < (x-,)// < +0.5. Using the least
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squares error approximation procedure. the constants CI and C: are found to be 5/32 and
35/24 respectively. Thus ¢(x. ~) can be written as

• 5 (x-;) 35 (X-~)'
4J(x•.;) = 32 -1- + 24 --1- . (7)

From eqns (5) and (7), we obtain

(8)

where

.f = xle. ( = f.lc. and c= ell. The expressions for gi, given by eqns (5) and (8) are compared
in Fig. 2 for two extreme cases. f.11 = 0 and 0.25. The agreement is quite good.

The function f(.i . .;) can be rewritten as

f(.i, () = (-8I.i(~+ 140.f\~' +210.f(~')Tf)(~)

+ (17(:- 228?'.\,1 - 57c~J) T I (';l+ 21O(~'.iT1«()- 19(~' T, (~). (10)

where Tn are Chebyshev polynomials of the lirst kind. given by To{s) = I. T,{s) = S.

1'2{.1) = 2.1 1
- I. T,{.1) = 4s' - 3s and 1'4(.1) = 8.1 J

- 8s 1+ I.
We will introduce a nondimensional parameter B = (1t/32)(D 11D,Hllil) 1 and a non­

dimensional contact pressure ii = (pR)/(D:I). From eqns (4). (X) and (10). the integral
equation (3) takes the form

fr I [ (/ _) + IN iF, ()]ii(';) d~ = -l~.f.
-I 1t<,-X 1t

(II)

The contact pressure /;(.q can be assumed to be of the form

J

p(.i) = (I - .f:) 1.'2 L qn Tn (.i).
I1~O

(12)

rn order to evaluate the first term of the integral in eqn (II) we will use the result (Gladwell,
1980)

- Equation (a)
o Equation (5)
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Fig. 2. Exact and approximate slopes of simply supported beams.
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where {P} denotes the Cauchy principal value and U,,(s) are the Chebyshev polynomials
of the second kind defined by U_1(s)=0. Uo(S) = I. U1(s)=2s, U2(s)=4s2 -1,
UJ(s) = 8s J -4s and U4(s) = 16s4 -12s2+ l. The second term of the integral in eqn (11)
can be easily evaluated using the orthogonality condition

I-I 1o. n:;6 m
_I (l-l~)-l~Tm(t)T,,(I)dt= n/2. n=m:;60

n. n = m = O.

Thus eqn (11) takes the form

2'11 +4q2·i+ qJ(8.i 2 - 2) +q4( 16.iJ
- 8.i) + B{qo( - 8 Ic2.i+ 140,":4.i J +2IOc4.i)

+q, (8.S,"l 2
- 114c4.i2

- 28.Sr) +q2( IOSc4.i) +qJ( -9.Sc4)} = -ex. (13)

By equating the coefficients oLio, ... ,.e on both sides ofeqn (13), we obtain four equations
(14)-( 17) in the unknowns C/o'···. C/4-

(-114Bc4 )C/, +8q, = 0

(14)

(IS)

(16)

(17)

The fifth equ:ttion (18) is obtained from the fact that the contact stresses vanish at the ends
of contact zone, Le.

The solution of eqns (14)-( 18) is as follows:

'It = qJ = O.

and

where fJ is a nondimensional parameter defined as fJ = 8.7SBe4
,

Co!ltact stresses
The contact force is given by

J
~<

P = h _< p(x) dx,

and. using eqn (12). we obtain

(18)

(19)

(20)

(21)

(22)
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Fig. 3. CQnt;tct stresses in simply supported beams.

(23)

We shall plot the contact stresses using another Ilondimensional contact stress parameter.
p =: (rchc/2P)p(x). Using eqns (12) and (23) and substituting for if2 and if.1 in terms of ifn
from eqns (21) and (22). we obtain

(24)

Expression (24) defines the contact stress distribution in a simply supported orthotropic
beam in terms of a single nondimensional parmneter Ii. and it is plotted in Fig. 3 for
o< fl < I. The curve for Ii == 0 represents the half-planl.: solution. It should be mentioned
that the above solution assumes that no separation occurs between the indenter and thl.:
bC.lm. In f.H.:t, separation occurs at II = I. It is interesting to sec that the value of p at
.i == 0.5 is a constant. )3/2, for all beams. This can be observed in all the previous numerical
results. for example Keer and Ballnrini (11)83). Keer nnd Miller (11)83), Keer and Schonberg
(1986). Snnkar nnd Sun (11)83) nnd Sankar (19X7n. b). until the indenter separates from the
beam.

Contact force-contact length relution
WI.: define a nondimensional contnet force J3 = (4PR)/(nD 2hl 2

). From eqns (19) and
(23) the load-contact length relation takes the form

(25)

For a h.llf plane. the above relation takes the simple form J3 =: lZ. The variation of J3 with
c is plotted in Fig. 4 for various values of the beam parameter B. The eurve for B = 0
corresponds to the h.lIf-plane solution. The effect of B is to increase the contact length for
a given contact force. In S.lOkar (1987b) the elfect of beam curvature was taken into
account by considering the problem as that of contact between two curved bodies. Such an
assumption will result in a P-c relation of the form

(26)

which is a reasonable approximation of cqn (25) for small (~.



Smooth indentation of orthotropic beams

B • 100----
~_---B • 1000

111'2 10"

CONTACT LENGTH, cll

Fig. 4. Contact force~ontact length relation in simply supported beams.

J. INDENTATION OF AN ORTIIOTROI'IC CANTILEVER BEAM
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In this section we consider the case of a cantilever beam, as shown in Fig. 5. The
indenter location is given by X,. Initial contact will be a line contact at x = x,. As the load
is applied, c will increase. and the center or contact dclined by x< will move towards the
fixed end or the beam. Thus an additional unknown x< is introduced. However, the contact
stresses will be unsymmetric about the center or contact length. and so we have one more
equation which states that the contact stresses vanish at the left end or the contact region
too.

There is another important dillcrence between symmetric and nonsymmetric cases.
The solution for y-displacements in the half-plane contains arbitrary terms for translation
and rotation, which means that the expression for the boundary slope of the half-plane will
contain an arbitrary constant. In the case of symmetric contact. the rotation term can be
assumed to be zero. In the case of the cantilever beam problem. this di/l1culty can be
overcome by subtr;\I.:ting g~(O.~) from .tJ~(x.~) in the integral equation (3). This means that
we arc measuring the boundary slope relative to the slope at x = O. Thus eqn (3) will
become

(27)

t-----Xl----........j

1---- Xc -----I

r--===-----:\--+-if-~:---I------x,1

1

y,2

Fig. 5. Indentation of an orthotropic cantilever beam.
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Fig. 6. Exact and approximate slopes of cantilever beams.

The second term in the above integral is the boundary slope of the half-plane at x = 0 due
to the applied load P, which we shall denote by OhO, i.e.

f
+c

b -c 91,(0, {)p({) d~ = 0hO'

Although eqn (27) can be solved using the procedure described in section 2, we will simplify
the derivations by approximating OhO as the slope due to a concentrated force P at x = xc.
From eqn (4), 0hO = (2P/rcbD z)(l/xc). Substituting for P from eqn (23), we obtain
0hO = (2Ie/ Rxc)qo.

For a cantilever beam, the slope is given by

(28)

where ¢(x, {) is defined in eqn (6). As before, we will approximate the Green's function by
a single function as

(29)

where

f(.i, fJ = 3840(c~+.iJ2 - ~i'2(.i_ fJ2 + mi'(.i-~) + ~U3(.i- ()3}.

x = (x-xc)/c, ~ = (~-xc)/c, .i; = xdl, and Xc = xc/I.

Comparison of the exact (eqn (28» and approximate (eqn (29» beam slopes is shown in
Fig. 6 for various values of~.

The contact stresses are assumed to be of the form given by eqn (12). The integral
equation (27) takes the form

The solution procedure is similar to that explained in section 2 and so is not repeated here.
By equating the coefficients of .io, ... , Xl on both sides ofeqn (30), we obtain four equations
(31)-(34) in the unknown qs. The remaining two equations (35) and (36) are obtained from
the fact that p =0 at .i = - I and .i = + I.

[Bc(192.i; +48(2) - (2cj.ic )]qo + [2 + Bi'2(192.ic - 7.5 - 52.5i'2)]ql

+24Bc3q2+( -2-l7.5Bc4 )q3 = .i,-.ic (31)



Smooth indentation of orthotropic beams
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Fig. 7. Contact force-eontact length relation in cantilever beams.
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(32)

(33)

(34)

(35)

(36)

Equations (33)-(36) can be used to solve for q" ...• q4 in terms of qn. The results arc:
'I, = (-128£"'.1)'111/(1 +3p). '12 = (-I +P>qlh q.l = -'I" and q4 = -Ill/n.

Contact j(m'e-cofltact length relation
Substituting for qh ... , q4 in terms of qo in eqn (32). one can obtain a relation between

l/n and c. In terms of the nondimcnsional contact force P, the P-c relation takes the form

(37)

The P-c relations for various values of B are plotted in Fig. 7. B = 0 corresponds to the
half-plane. It is interesting to note that unlike the simply supported beam, as the contact
length increases, the load required for a given contact length is more thun thut in the
half-plane. This is because of the convex shape of the deformed beam. However. the
beam curvature effect is not as pronounced as in the case of a simply supported beam
(see Fig. 4).

Contact stresses
Substituting for q, .... , q4 in terms of qa in eqn (12), thc nondimcllsional contact

stresses can bc written as

. r;--;;z[ P I _. 24BC
J.i]

P=v l - x 1- (-4x-)- 1+3P . (38)

The contact stress distribution is unsymmetric about the contact center. A sample contact
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Fig. 8. Contact stresses in cantikvcr beams.

stress distribution is shown in Fig. 8. In using eqns (37) and (38). care should be taken that
the left end of the contact region is not very close to the fixed end of the beam.

COlllacl ('clller

An equation for .\\. can he ohtained hy eliminating C/o from egns (31) and (32). This
will yield a nonlinear algehrail.: equation in .\', which can he solved hya simple iterative
prol.:edun:..\', will he obtained as a funl.:tion of (\ which in turn can be expressed in terms
of i' using eqn (37). II and .\', will be the other parameters in the expression for .\',. The solid
lines in Fig.\) depict the variation of .\', with Pfor different values of B. The value of .\', is
assumed to be equal to O.X.

A simpk method of determining .\', is decribed as follows. Assuming that the tangent
to the indl.:llter at the I.:ontact point will have thl.: same slope as thl.: beam at that point. we
obtain the relation

X,-x" 61' •
R = D1h/;J x:,

which yidtls a quadratic equation in x,. Thl.: solution for x" can be cxpn:ssetl in terms of
thl.: nondimensional parameters defined earlier:

8=0

.....
)(

ci
w...
Z
W
()

...
()

'"...z
o
()

.,It • 0.8

-Equation 131}

• Equallon (39)
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10. 1 10'S 10" 10.3 10·l 10"

CONTACT FORCE. P
Fig. 9. Location of cont;lct center in cantilever beams.
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.i~ = (-I +"h + 192PB-i,)!(96PB).
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(39)

In Fig. 9, solid circles represent the relation between P and .i~ obtained from eqn (39). It
may be seen that eqn (39) provides a simple method of finding .ic for a given contact force.

4. SUMMARY

The approximate Green's function method described in this paper provides a closed
form solution for the problem ofcontact between a rigid indenter and an orthotropic beam.
The dimensionless beam parameter B and the contact parameter fJ seem to reflect the effects
of beam dimensions, degree of orthotropy of the beam material and contact length to beam
length ratio on the contact behavior of the beam. Equations (24) and (25) describe the
contact behavior of a simply supported orthotropic beam. In the case of cantilever beams,
eqn (39) provides a simple expression for determining the contact center, and eqns (37) and
(38) can be llsed to determine the cont.lct length and the contact stresses. Extension of the
present method to other types of beam support is straightforward.
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